A short review of the relationship between chronic

inflammation and psychological disorders

Yunquan Zheng, Chengdang Wang

Department of Gastroenterology, The First Affiliated Hospital, Fujian Medical

University,

Fuzhou, 350005, Fujian Province, China

 $Correspondending\ author:\ Chengdang\ Wang,\ Email:wangcdhl@fjmu.edu.com$

Abstract: Chronic inflammation is closely related to a variety of

psychological

disorders such as anxiety, depression, sleep disorders and attention disorders,

and even

suicide. On the other hand , the psychological disorders may be also one of

risk factors

for triggering and aggravating chronic inflammation. This article mainly

reviews the

researches on the relationship between chronic inflammation and

psychological disorders

in recent years.

Key words: Chronic inflammation; psychological disorders;

anxiety;depression

Introduction

Up to date, it's believed that for psychological disorders (such chronic inflammation may intertwine with psychological disorders, and then may form a bidirectional loop between them,in which psychological disorders positively facilitated inflammatory responses and chronic inflammation conversely promoted psychological disorders. Chronic inflammation may be a characterized part of some systemic diseases, such as cardiovascular diseases, diabetes, metabolic syndrome, rheumatoid arthritis, asthma, multiple sclerosis, chronic pain, psoriasis and so on [1] .These patients had a higher risk

as anxiety and depression) than general population. According to the bio-psycho-social model of diseases, psychological factors play a more and more important role in some chronic diseases.And in clinical, physicians gradually pay more attention on the psychological factors other than the physical ones.On the other hand, chronic inflammation may closely relate to a variety of psychological disorders, such as anxiety, depression, sleep disorders, attention disorders, and so on.The psychological disorder may be a direct reason

for some chronic	suffering from
inflammation,and an important	^[2] .Clinical studies have confirmed
factor for disease	that
aggravation.However,it remained	anxiety and depression are
unkown how do the	anxiety and depression are
	associated with a range 39
inflammation and psychologies	Psychosomatic Gastroenterology,Vol
affect each other.So this article	1,No 1 December 2018 ©Psychosomatic Gastroenterology.All
was aimed to review	rights reserved.
the relationship between chronic	of inflammatory diseases such
the relationship between enrome	as gastrointestinal
inflammation and	as gastronitestina
	inflammation and autoimmune
psychologies.	
	diseases.Depression
A vicious circle between	-
	may be a manifestation of
chronic	
	external neuropsychiatric
inflammation and	
	symptoms of the chronic
psychological	
	inflammatory syndrome,
disorders	
	which is most commonly found
Psychological disorders are one	
	in gastrointestinal
of the most prevalent	
diagona in the month and acially	mucosal damage, usually due to
diseases in the world, especially	mucosal flora
depression and	inucosar nora
	disorders and the damage of
anxiety,which more than 300	utoriatio and the damage of
	mucosal repair.On the
million people are	L · · · · ·

other hand, it's also very common in clinical practice that many patients with chronic gastrointestinal inflammation are often accompanied by manifestations of autonomic dysfunction(such as fatigue, dizziness, headache, and insomnia). The chronic gastrointestinal inflammation may cause systemic effects via cytokines, neuropeptides and eicosanoids, and then impact various organ functions(such as the brain). Recently many researchers have focused on the role of "brain-gut axis" in the comorbidity between intestinal diseases and psychological symptoms,

such as the role of inflammatory bowel disease (IBD)and irritable bowel syndrome(IBS)in the development of central comorbidities.On the contrary, anxiety and/or depression may increase the grade of intestinal inflammation and may result in IBD recurrence [3-6] .Psycho-neuro-endocrine-immu ne regulation via the brain-gut axis may not only play a key role in psychological disorders, but also in chronic inflammation of the gastrointestinal tract.In clinical practice, many patients with severe ulcerative

colitis(UC)presents depressive symptoms or mental stress.Previous studies had found that the incidence of anxiety and depression was significantly higher in patients with functional gastrointestinal disease or organ damages than in the general population. Konturek.et al [7] conducted a questionnaire survey including 1 641 patients with gastrointestinal diseases, in which 1 379 cases of psychological disorders,1 098 cases of anxiety and 442 cases of depression have been notified respectively.And Logistic regression analysis

showed that patients with gastrointestinal diseases are more likely to develop anxiety and depression. These findings indicates that chronic gastrointestinal inflammation may directly result in anxiety and depression. Possible mechanisms of the interaction between chronic inflammation and psychological disorders In a state of chronic inflammation, the immune system responds by producing various proinflammatory cytokines and metabolites, several of which are detected in the blood

[8] was found that stimulation of .These molecules cross the the vagus nerve could blood-brain barrier(BBB)and significantly inhibit cytokine signal the brain production, and this which eventually leads to discovery had led to the psychological disorders recognition of the concept [9] of cholinergic anti-inflammatory . Previous studies have suggested pathways [10-11] that the mechanisms .In of interaction between chronic the presence of systemic inflammation and inflammation, the central psychological disorders are nervous system(CNS)can be complex and may involve activated by the multiple interactions such as afferent fibers of the vagus neural,humoral,cellular nerve.These signals and carrier route. are integrated in CNS, and fire 1.Neural pathway the efferent nerves Vagus pathway is very important of the CNS, and then regulate the in the regulation of splenic immune gastrointestinal motility and response via the superior secretion.And now it mesenteric ganglia.And the

activation of splenic cholinergic	[12-13]	
activation of spicific chointergie	.Animal	
nerves results in the	Animal	
nerves results in the	models with depression had get	
release of norepinephrine,which	models with depression had got	
release of norepinepinine, which	a made ation of intertional	
	a reduction of intestinal	
positively trigger		
	acetylcholine	
more acetylcholine release.In		
	level.Interestingly,this depression	
fact.acetylcholine		
	model was more likely to	
decreases the expression of TNF-		
	TNBS-induced UC.And this	
a,IL-1,IL-18,and		
	phenomenon can be reversed by	
other proinflammatory		
	antidepressants	
factors.O' Mahony,et al		
	[14]	
[12]		
found that dextran sodium		
	Once presence of chronic	
sulfate(DSS)induced	1	
	intestinal inflammation,the	
UC animal were more severely		
	vagus nerve is activated by	
exacerbated by	vagus nerve is activated by	
chaecibated by	proinflammatory cytokines	
outting the vegue news And the	prominaninatory cytokines	
cutting the vagus nerve.And the		
	and other metabolites released	
acetylcholinesterase	1	
	by immune cells,40	
inhibitors(such as neostigmine	A short review of the relationship	
	between chronic inflammation and	
and physostigmine)	psychological disorders	
	©Psychosomatic Gastroenterology.All	
significantly alleviated the	rights reserved.	
	lights reserved.	
severity of colitis induced	neurons or intestinal bacteria	
	[15]	
by trinitrobenzenesulfonic	[15]	
	.This cascade activates	
acid(TNBS)		

hypothalamic-pituitary-adrenal Cortisol levels in patients prone axis(HPA)which to be unpleasant increases cortisol(stress are higher than those in healthy hormone)levels and decreases controls [15,17] brain-derived neurotrophic .Other factor(BDNF)levels studies have shown that [16] plasma/serum BDNF levels . Cortisol has a strong negative were lower in patients with acute major depression impact not only on the hippocampus and amygdala,but (MDD) compared with healthy also on the function controls, and both of the prefrontal cortex; whereas antidepressant therapy and the traditional brain electroconvulsive therapy derived neurotrophic factor can significantly increase the hypothesis suggests that plasma/serum BDNF level BDNF is an important regulator [18] of nerve growth.The .At the same time, hyperactivity reduction of BDNF levels leads to of the HPA increased neuronal is also the reason of apoptosis, which will cause dysregulation of the kynurenine depressive symptoms.

pathway.The basic role of the	tract		
kynurenine in healthy	[20]		
organisms is to convert	.Intestinal inflammation interferes with the		
-			
tryptophan into two basic	above sympathetic nervous process.The previous		
compounds involved in mood			
regulation, namely	studies on arthritis found that		
serotonin and melatonin	the inflamed region		
	showed absence of sympathetic		
Sympathetic nervous fibers are	nerve fibers		
not only distributed in	[21-23]		
the intestinal plexus,but also in	Patients with Crohn's		
intestinal mucosa and	disease(CD)showed as well as		
intestinal-associated lymphoid			
tissue	the absence of sympathetic		
[20]	nerve fibers in the intestinal		
.Sympathetic	mucosa and the submucosa.The		
nerves release	similar phenomenon		
norepinephrine,neuropeptide Y,ATP,	was also found in DSS-induced		
and purine,and then regulate	colitis mice		
the movement, secretion,	[24-25]		
sensory and immune activities of	,with		
the gastrointestinal	a decreased secretion of		
Oron on too think	sympathetic neurotransmitters		

catecholamines [26] However, there are some contradictions.For instance, 6-hydroxydopamine,blocking the sympathetic nerve function, significanty aggravated chronic colitis induced by DSS in mice, and also raised the intestinal inflammation in IBD mice by IL-10 gene knockout. But it alleviates intestinal inflammation in IBD rats induced by DSS or TNBS [27] .Therefore, the sympathetic nerve may have both the proinflammatory and anti inflammatory effects, and the role of sympathetic

such as norepinephrine and

remained uncertain and need further studies. 2.Humoral pathway Leukocytes have the ability to pass or migrate into tissues, and this ability is extremely crucial for the performance of the host in terms of physiology, immunopathology and host defense.The classical theory is that due to the presence of the blood-brain barrier(BBB)and the lack of lymph drainage,the central nervous system is relatively homeostatic and the accessing of white blood cells to the CNS are limited.Circumventricular organs(CVOs)are a group

nerve in IBD pathogensis

of structures within the brain that are rich in blood vessels, but lack of the integrated BBB.They can be divided into two categories according to the functions, that's sensory organ and secretory organ. The sensory CVOs include the posterior marginal zone, subfornical organ and the organum vasculosum laminae teminalis. These structures are able to identify those molecules in the plasma and transmit information to other areas of the brain and directly get involved in the regulation of the circulatory system by the autonomic nervous system. The secretory CVOs include subcommissural

organ, posterior lobe of the pituitary gland(also referenced as neurohypophysis), pineal gland, median carina and intermediate lobe of hypophysis of some animals. These structures are in charge of the secretion of hormones and glycoproteins into the blood during feedback regulation of the brain' s reaction to internal and external stimuli.CNS can communicate with peripheral blood circulation via CVOs.Meanwhile, CVOs are also an important part of neuroendocrine function. The humoral pathway is that the peripheral

inflammatory factors and related metabolites affect the CNS and induces psychological disorder by acting on CVOs [28] .These peripheral inflammatory factors and related metabolites are often induced by chronic inflammation. 3.Cellular route The cellular route involves cytokine receptors, such as receptors for TNF-aand IL-1 β , expressed on non neuronal cells in the brain, such as microglia and 41 Psychosomatic Gastroenterology,Vol 1,No 1 December 2018 ©Psychosomatic Gastroenterology.All rights reserved. astrocytes [29-30] .TNF-aand IL-1ßenter the brain

via CVOs and/or other pathways, and bind to their receptors in the brain, and then activate the cerebral NF-kB signaling pathway and induce the production of secondary cytokines, which can aggravate the depressed mood [31] .In fact, a great amount of data showed that increased levels of cytokines in peripheral circulation have dose-dependent effects on psychological symptoms and the severity of depression. Proinflammatory cytokines such as IFN-y,IL-2,IL-6, TNF-aand inflammatory markers such as CRP are associated with a higher risk of depression

4.Carrier route

The blood-brain

barrier(BBB)prevents unrestricted

migration/transportation of

peptides and proteins

between the brain and

blood.However,some peptides

and regulatory proteins can

access the brain via the

energy-and carrier-dependent

active transport system

or via no energy-dependent

carrier-mediated facilitated

diffusion system to cross the

BBB

[32,34]

.Such as the way

how tryptophan access the

CNS.Generally speaking,

tryptophan can access the CNS

under the transport

5-hydroxytryptamine.In the state of systemic inflammation, the neutral amino acid transporter(LAT-1)on the blood-brain barrier can transport kynurenine from the peripheral blood circulation to the CNS and produces downstream cascade metabolites with the stimulation of central glial cells [35] • 5.0thers Psychological disorders can cause or aggravate chronic inflammation, in addition to the above mentioned systemic

of a carrier to synthesize

interactions, including the effects

.

of stress, poor nutrition, physical inactivity, obesity, smoking,gut permeability, microbiota disturbances, mitochondrial dysfunction, autoimmunity, and sleep disturbances [36-38] .In a meta-analysis,Howren,et al [32] suggested that higher CRP level in MDD with obesity is a risk factor for the development of diabetes and cardiovascular disease,and these chronic diseases are significantly associated with increased morbidity and mortality of psychotic disorders [39]

•

Progress in the treatment of chronic inflammation and psychological disorder Inflammation is a reaction of the body against infection, injury and immune stimuli.Moderate inflammatory reaction is essential for repairing damage and maintaining homeostasis.On one hand, the local inflammation can be transmitted to the CNS through the "brain-gut axis", and induces changes of the CNS activities and functions, which may lead to development of psychological disorders. This suggests

that reasonable intervention in certain phases of the inflammatory has a positive effect on the disorders of the CNS.On the other hand,long-term psychological disorders will also affect the recurrence and progression of chronic inflammation through multi-pathway interactions. 1.Anti-inflammatory drugs Several studies had found that some anti-inflammatory drugs showed an antidepressant effect.Recently, COX-2 inhibitors(such as celecoxib), minocycline (microglia inhibitors)and anakinra(IL-1R1 receptor antagonist)were studied respectively. They exerted a

variety of antidepressant effects on various depression. Celecoxib can relieve the HPA dysregulation induced by removing olfactory bulbs, and relieve pleasure loss as a result of unpredictable chronic mild stress [40,41] . Minocycline can normalize the behaviors of mouse, which are depression models with learning helpless and forced swimming [42,43] .Anakinra also relieves the symptoms of depression in rats [44, 45]2.Antidepressants Antidepressants have also been found have the

ability to anti-inflammatory in animal models of chronic inflammation.Different anti-inflammatory mechanisms have been established for different types of antidepressants, including selective serotonin reuptake inhibitors(SSRIs, such as sertraline and citalopram),tricyclic antidepressants(such as pamin and imipramine) and atypical antidepressants(such as agomelatine melatonin receptor inhibitor) [46-48] Cognitive behavioral therapy not only improves psychological symptoms, but also alleviates the

gastrointestinal symptoms

[49]

.The therapy stimulates 42 A short review of the relationship between chronic inflammation and psychological disorders ©Psychosomatic Gastroenterology.All rights reserved. the vagus nerve and then activates the cholinergic anti inflammatory pathway and exerts its anti-inflammatory effects, which has been widely used in drug-dependent epilepsy and depression [47] .Animal studies had shown that activation of the vagus nerve can relieve symptoms, alleviate intestinal inflammation and reduce histological score in colitis rats [50] .These also suggested that cognitive behavioral therapy and stimulation of

the vagus nerve may become potential therapeutic measures for human inflammatory diseases(such as IBD and arthritis etc). Conclusions and outlooks There is an interaction between chronic inflammation and psychological disorders. Those patients with chronic inflammatory inflammation often are affected by psychological disorders, such as depression and anxiety. These symptoms have an adverse effect on the progression and morbidity of chronic inflammation and treatment outcome by various mechanisms.However,

the most studies were still stuck in phenomenological correlations as well as in the investigation of the effects after specific molecular interventions.For some exact mechanisms, more convincing experimental verification is necessary.In particular, It is worthy of searching biomarkers to assist in the diagnosis and prediction of the treatment effect of psychological disorders. The collaboration between clinicians and psychologists is essential and encouraged in clinical practice. References 1.Slavich GM,Irwin MR.From stress to inflammation

and major depressive disorder:a	Recurrence of Inflammatory		
social signal	Bowel Disease.Clin		
transduction theory of	Gastroenterol		
depression.Psychol Bull,	Hepatol,2016;14(6):829-835.		
2014;140(3):774-815.	5.Gracie DJ,Guthrie EA,Hamlin		
2.WHO.Depression.Availableonli	PJ,et al.Bi		
ne:http://www.	directionality of Brain-Gut		
who.int/news-room/fact-sheets	Interactions in		
/detail/depression	Patients With Inflammatory		
(accessed on 20 June 2018).	Bowel Disease.		
3.Bernstein CN.Psychological	Gastroenterology,2018;154(6):1		
Stress and	635-1646.		
Depression:Risk Factors for	6.Bonaz BL,Bernstein		
IBD?Dig Dis,2016;	CN.Brain-gut interactions in		
34(1-2):58-63.	inflammatory bowel		
4.Mikocka-Walus A,Pittet	disease.Gastroenterology,2013;		
V,Rossel JB,et	144(1):36-49.		
al.Symptoms of Depression and	7.Konturek PC,Brzozowski		
Anxiety	T,Konturek SJ.		
Are Independently Associated	Stress and the		
With Clinical	gut:pathophysiology,clinical		

consequences, diagnostic	nerve stimulation attenuates the
approach and treatment	systemic
options.J Physiol	inflammatory response to
Pharmacol,2011;62(6):591-599.	endotoxin.Nature,2000;
8.Dantzer R.Cytokine,sickness	405(6785):458-462.
behavior,and	12.0' mahony C,Van Der Kleij
depression.Immunol Allergy Clin	H,Bienenstock J,et
North Am,	al.Loss of vagal
2009;29(2):247-264.	anti-inflammatory effect:in vivo
9.Van Heesch	visualization and adoptive
F.Inflammation-Induced	transfer.Am J Physiol Regul
Depression.	Integr Comp
Studying the Role	Physiol,2009;297(4):R1118-1126.
ofProinflammatory Cytokines	13.Miceli PC,Jacobson
in Anhedonia;Utrecht	K.Cholinergic pathways
University:Utrecht,The	modulate experimental
Netherlands,2014.	dinitrobenzene sulfonic acid
10.Tracey KJ.The inflammatory	colitis in rats.Auton
reflex.Nature,2002;	Neurosci,2003;105(1):16-24.
420(6917):853-859.	14.Ghia JE,Blennerhassett
11.Borovikova LV,Ivanova	
	P,Collins SM.Impaired

parasympathetic function	Psychiatry Clin		
increases susceptibility to	Neurosci,2010;64(5):447-459.		
inflammatory bowel disease in a	17.Stewart JG,Mazurka R,Bond		
mouse model of	L,et al.Rumination		
depression.J Clin	and impaired cortisol recovery		
Invest,2008;118(6):2209-2218.	following a social		
15.D'melloC,SwainMG.I	stressor in adolescent		
m m u n e-t o-B r a i n	depression.J Abnorm Child		
Communication Pathways in	Psychol,2013;41(7):1015-1026.		
Inflammation	18.Kishi T,Yoshimura R,Ikuta		
Associated Sickness and	T,et al.Brain-Derived		
Depression.Curr Top	Neurotrophic Factor and Major		
Behav Neurosci,2017;31:73-94.	Depressive		
16.Kunugi H,Hori H,Adachi N,et	Disorder:Evidence from		
al.Interface	Meta-Analyses.Front		
between	Psychiatry,2017;8:308.		
hypothalamic-pituitary-adrenal axis	19.Kanchanatawan		
and	B,Sirivichayakul S,Thika S,et		
brain-derived neurotrophic	al.Physio-somatic symptoms in		
factor in depression.43	schizophrenia:		
Psychosomatic Gastroenterology,Vol 1,No 1 December 2018 ©Psychosomatic Gastroenterology.All rights reserved.	associationwithdepre ssion,anxiety,		

neurocognitive deficits and the
tryptophan
catabolite pathway.Metab Brain
Dis,2017;32(4):
1003-1016.
20.Straub RH,Wiest R,Strauch
UG,et al.The role
of the sympathetic nervous
system in intestinal
inflammation.Gut,2006;55(11):1
640-1649.
21.Miller LE,Justen
HP,Scholmerich J,et al.The loss
of sympathetic nerve fibers in
the synovial tissue of
patients with rheumatoid
arthritis is accompanied
by increased norepinephrine
release from synovial
macrophages.Faseb
j,2000;14(13):2097-2107.

22.Weidler C,Holzer C,Harbuz
M,et al.Low density
of sympathetic nerve fibres and
increased density
of brain derived neurotrophic
factor positive cells
in RA synovium.Ann Rheum
Dis,2005;64(1):13-20.
23.Mei Q,Mundinger
TO,Lernmark A,et al.Early,
selective,and marked loss of
sympathetic nerves
from the islets of BioBreeder
diabetic rats.
Diabetes,2002;51(10):2997-300
2.
24.Straub RH,Grum F,Strauch
U,et al.Anti
inflammatory role of

sympathetic nerves in chronic

٠				1
1	nt	20	111	nal
T	ıιι	ບວ	ιu	ıa

inflammation.Gut,2008;57(7):911-9 21.

25.Straub RH,Stebner K,Harle P,et al.Key role of the sympathetic microenvironment

for the interplay of

tumour necrosis factor and

interleukin 6 in normal

but not in inflamed mouse colon

mucosa.Gut,2005;

54(8):1098-1106.

26.Magro F,Vieira-Coelho

MA, Fraga S, et al. Impaired

synthesis or cellular storage of

norepinephrine,

dopamine,and

5-hydroxytryptamine in human

inflammatory bowel disease.Dig

Dis Sci,2002;

47(1):216-224.

27.BoisseL,ChisholmS

P,LukewichMK,

et al.Clinical and experimental

evidence

of sympathetic neural

dysfunction during

inflammatory bowel disease.Clin

Exp Pharmacol

Physiol,2009;36(10):1026-1033.

28.Ransohoff RM,Kivisakk

P,Kidd G.Three or more

routes for leukocyte migration

into the central nervous

system.Nat Rev

Immunol,2003;3(7):569-581.

29.Jensen CJ,Massie A,De

Keyser J.Immune

players in the CNS:the

astrocyte.J Neuroimmune

Pharmacol,2013;8(4):824-839.

30.Yang I,Han SJ,Kaur G,et

al.The role of microglia

in central nervous system	al.Interleukin,tumor necrosis
immunity and glioma	factor-alpha and
immunology.J Clin	C-reactive protein profiles in
Neurosci,2010;17(1):6-10.	melancholic and non
31.Rivest S,Lacroix S,Vallieres	melancholic depression:A
L,et al.How the	systematic review.J
blood talks to the brain	Psychosom
parenchyma and the	Res,2018;111:58-68.
paraventricular nucleus of the	34.Banks WA.The blood-brain
hypothalamus during	barrier as a regulatory
systemic inflammatory and	interface in the gut-brain
infectious stimuli.Proc	axes.Physiol Behav,2006;
Soc Exp Biol	89(4):472-476.
Med,2000;223(1):22-38.	35.Scalise M,Galluccio
32.Howren MB,Lamkin DM,Suls	M,Console L,et al.The
J.Associations of	Human SLC7A5(LAT1):The
depression with C-reactive	Intriguing Histidine/
protein,IL-1,and IL-6:a	Large Neutral Amino Acid
meta-analysis.Psychosom	Transporter and Its
Med,2009;71(2):171-186.	Relevance to Human
33.Ya n g C,Ti e m e s s e n K M,B	Health.Front Chem,2018;6:
oskerFJ,et	243.

36.Robertson RC,Seira Oriach C, Murphy K, et al.Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood.Brain Behav Immun, 2017; 59:21-37. 37. Anderson G. Linking the biological underpinnings of depression:Role of mitochondria interactions with melatonin, inflammation, sirtuins, try ptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition.Prog Neuropsychopharmacol Biol

38.Berk M, Williams LJ, Jacka FN, et al. So depression 44 A short review of the relationship between chronic inflammation and psychological disorders ©Psychosomatic Gastroenterology.All rights reserved. is an inflammatory disease, but where does the inflammation come from?BMC Med,2013;11:200. 39.De Melo LG P, Nunes SO V,Anderson G,et al.Shared metabolic and immune-inflammatory,oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders.Prog Neuropsychopharmacol Biol Psychiatry, 2017; 78:34-50. 40.Myint AM, Steinbusch HW,Goeghegan L,

Psychiatry,2018;80(Pt

C):255-266.

et al.Effect of the COX-2 inhibitor celecoxib on behavioural and immune changes in an olfactory bulbectomised rat model of depression. Neuroimmunomodulation,2007; 14(2):65-71. 41.Santiago RM,Barbiero J,Martynhak BJ,et al.Antidepressant-like effect of celecoxib piroxicam in rat models of depression.J Neural Transm (Vienna),2014;121(6):671-682. 42.Arakawa S,Shirayam a Y,F u jita Y,et al.Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations

in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline.Pharmacol Biochem Behav,2012;100(3): 601-606. 43.Molina-Hernandez M,Tellez-Alcantara NP,Perez Garcia J,et al.Antidepressant-like actions of minocycline combined with several glutamate antagonists.Prog Neuropsychopharmacol Biol Psychiatry, 2008; 32(2): 380-386. 44.Konsman JP,Veeneman J,Combe C,et al.Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in